
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Lecture with exercises (2+2)
URL: http://www7.informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa/DSA_Script

Ulrich Klehmet
Email: klehmet@informatik.uni-erlangen.de

Data Structures and Algorithms (2)

 Introduction and motivation

 Calculating Fibonacci numbers
 recursive algorithm, iterative algorithm, iterative squaring

 Growth of functions --- asymptotic notation

 Sorting
 insertion sort, merge sort, heapsort, quicksort

 Elementary data structures
 stack, queue, linked list, tree

Contents (1)

Data Structures and Algorithms (3)

 Hash tables
 direct addressing, hashing, chaining, open addressing

 Binary search trees
 definition, tree walks, querying, insertion, deletion,

expected height

 Red-black trees
 definition, balancedness, rotations, insertion, (deletion)

 Graph algorithms
 representation of graphs, breadth-first search, depth-first

search,

Contents (2)

Data Structures and Algorithms (4)

 “Data Structures and Algorithms”

 What is a Data Structure?
 What is an Algorithm?

 What does the combination of Data Structures
and Algorithms mean?

 How can we judge how useful a certain
combination of Data Structures and Algorithms
is?

Introduction

Data Structures and Algorithms (5)

 A Data Structure is
 is the method to store and organize data

to facilitate access and modifications

 the type of data
 e.g. “stack”, “queue”, “tree”

 the construction of complex domains
using elementary domains
 e.g. arrays, records, unions, sets,

functions of elements of simple type
 and arbitrary repetitions of such construction steps

Introduction

Data Structures and Algorithms (6)

Introduction

 Informally: (Cormen et al.)
An algorithm is any well-defined computational procedure that
takes some value (set of values), as input and produces some
value (set of values) as output

 An algorithm is thus a sequence of computational steps that
transform the input into the output

 An algorithm must halt after a final number of steps or time

 An algorithm is correct if, for every input instance, it halts with the
correct output

Data Structures and Algorithms (7)

 An Algorithm

 is a procedure for processing,
that is formulated so precisely that it may be performed by
a mechanical or electronic device

 must be formulated so exactly that the sequence of the
processing steps is completely clear

 has to terminate
 has well-defined semantics

 Typical examples for algorithms
are computer programs
written in a formal programming language

Introduction

Data Structures and Algorithms (8)

What does the combination
of Data Structures and Algorithms mean?

“Algorithms + Data Structures = Programs”
(This is the title of a book
of the famous Swiss researcher Niklaus Wirth, well known
as the inventor of the programming language “Pascal”)

 Good programs employ
a “well suited combination”
of Data Structures and Algorithms

Introduction

Data Structures and Algorithms (9)

 How can we judge how useful
a certain combination of Data Structures
and Algorithms is?

 We have to evaluate the effort that arises from
performing a computation using this “certain
combination of Data Structures and Algorithms”

 This effort may be measured by
 memory space used
 cpu time used
 or other suitable measures

Introduction

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Pseudocode for algorithms

Data Structures and Algorithms (11)

Pseudocode for algorithms

Ways of formulating Algorithms
 Computer languages

( intention: to be run on computers)
 C
 JAVA
 Matlab
 Basic
 …

 Pseudo code
( intention: to describe algorithms on a high level,
to be understood by human beings)

 Remark: In both cases we have well-defined semantics!

Data Structures and Algorithms (12)

Pseudocode for algorithms

 Example of algorithm in Pseudo code

Data Structures and Algorithms (13)

 Rules for Pseudo code (1)
 Indentation indicates block structure
 Looping constructs (while, for, repeat)

and conditional constructs (if, then, else)
have interpretation similar to Pascal
 Difference: the loop-counter of for-loops remains valid

after exiting the loop

 Symbol ▻ or % indicates a comment

 Multiple assignment k  j  e
is equivalent to j  e and then k  j

Pseudocode for algorithms

Data Structures and Algorithms (14)

 Rules for Pseudo code (2)
 Variables (such as i, j, and key)

are local to the given procedure
 Array elements are accessed

by specifying the array name followed by
the index in square brackets (e.g. A[i])
 A[i..j] indicates a range of values within an array

(e.g. A[1..n] = A[1], A[2], …, A[n])

 Objects (= compound data) consist of fields or
components: abc[C] is field abc of an object C.

Pseudocode for algorithms

Data Structures and Algorithms (15)

 Rules for Pseudo code (3)
 An array is treated as an object with field length.

length[A] = number of elements of array A
 A variable representing an array or object

is treated as a pointer to the data
representing the array or object.

 NIL is the pointer that refers to no object at all
 Parameters are passed by value:

the called procedure receives a copy
of its parameters, that are treated
as local variables of the procedure

Pseudocode for algorithms

Data Structures and Algorithms (16)

 Rules for Pseudo code (4)
 The boolean operators “and” and “or”

are “short circuiting”:
 In an expression “x and y”, x is evaluated first
 If x is FALSE the expression is FALSE,

and y is not evaluated at all

 In an expression “x or y”, x is evaluated first
 If x is TRUE the expression is TRUE,

and y is not evaluated at all

 This allows writing of expressions e.g. as:
“x ≠ NIL and f[x] = y”

Pseudocode for algorithms

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Starting examples

Data Structures and Algorithms (18)

 The “sorting problem”

 Input:
A sequence of n numbers (a1, a2, …, an)

 Output:
A permutation (reordering) (a1’, a2’, …, an’)
of the input sequence
such that a1’ ≤ a2’ ≤ … ≤ an’

Starting examples

Data Structures and Algorithms (19)

 Insertion sort

Starting examples

Data Structures and Algorithms (20)

 Insertion sort

Starting examples

Data Structures and Algorithms (21)

 Insertion sort
 Be tj = number of times the while loop is executed for value j

Starting examples

Data Structures and Algorithms (22)

 Insertion sort
 “Running time in general”

Starting examples

Running time = number of primitive operations or steps

Data Structures and Algorithms (1)

Starting examples

 Insertion sort
 Best case: “already sorted”

(tj = 1 for j = 2, …, n)

linear effort w.r.t. input parameter

 ;)( a,bbnanT
n

Starting examples

 Insertion sort
 Worst case: “sorted in reversed order”

(tj = j for j = 2, …, n)

Data Structures and Algorithms (2)

Worst case running time is a quadratic function of n

Data Structures and Algorithms (25)

fact(4) = 4· fact(3) = 4 · 6 = 24

fact(3) = 3· fact(2) = 3 · 2 = 6

fact(2) = 2· fact(1) = 2· 1 = 2

fact(1) = 1· fact(0) = 1· 1 = 1

fact(0) = 1

Starting examples Principle of recursion

Expl: Computation of n! (n_factorial): n! = n (n-1) · (n-2) · … · 1 = n · (n - 1)!

fact(n)
if n = 0

then n_factorial := 1
else n_factorial := n · fact(n –1)

Data Structures and Algorithms (26)

 An example of a “recursive algorithm”: Merge sort

Starting examples

Data Structures and Algorithms (27)

Merge sort

Starting examples

	heute.pdf
	Starting examples
	Starting examples

