Introduction to
Data Structures and Algorithms

Lecture with exercises (2+2)
URL: http://www7 .informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa/DSA Script

Ulrich Klehmet
Email: klehmet@informatik.uni-erlangen.de

Friedrich-Alexander- Ilnwersuat
Erlangen-Niirnberg <

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Contents (1)

B Introduction and motivation

B Calculating Fibonacci numbers
= recursive algorithm, iterative algorithm, iterative squaring

B Growth of functions --- asymptotic notation

m Sorting
= insertion sort, merge sort, heapsort, quicksort

B Elementary data structures
= stack, queue, linked list, tree

Data Structures and Algorithms (2)

Contents (2)

B Hash tables
= direct addressing, hashing, chaining, open addressing

® Binary search trees

= definition, tree walks, querying, insertion, deletion,
expected height

B Red-black trees
= definition, balancedness, rotations, insertion, (deletion)

B Graph algorithms

= representation of graphs, breadth-first search, depth-first
search,

Data Structures and Algorithms (3)

Introduction

B “Data Structures and Algorithms”

= What is a Data Structure?
= What is an Algorithm?

= \WWhat does the combination of Data Structures
and Algorithms mean?

= How can we judge how useful a certain

combination of Data Structures and Algorithms
IS?

Data Structures and Algorithms (4)

Introduction

B A Data Structure is
= |s the method to store and organize data
to facilitate access and modifications

= the type of data

7 (11 b 13

= e.g. “stack’, “queue’”, “tree”

= the construction of complex domains
using elementary domains

= e.g. arrays, records, unions, sets,
functions of elements of simple type

= and arbitrary repetitions of such construction steps

Data Structures and Algorithms (5)

Introduction

® Informally: (Cormen et al.)

An algorithm is any well-defined computational procedure that
takes some value (set of values), as input and produces some
value (set of values) as output

B An algorithm is thus a sequence of computational steps that
transform the input into the output

B An algorithm must halt after a final number of steps or time

® An algorithm is correct if, for every input instance, it halts with the
correct output

Data Structures and Algorithms (6)

Introduction

B An Algorithm

= is a procedure for processing,
that is formulated so precisely that it may be performed by
a mechanical or electronic device

= must be formulated so exactly that the sequence of the
processing steps is completely clear

= has to terminate
= has well-defined semantics

B Typical examples for algorithms
are computer programs
written in a formal programming language

Data Structures and Algorithms (7)

Introduction

B \What does the combination
of Data Structures and Algorithms mean?

=“Algorithms + Data Structures = Programs”
(This is the title of a book

of the famous Swiss researcher Niklaus Wirth, well known
as the inventor of the programming language “Pascal”)

B Good programs employ
a “well suited combination”
of Data Structures and Algorithms

Data Structures and Algorithms (8)

Introduction

B How can we judge how useful
a certain combination of Data Structures
and Algorithms is?

= We have to evaluate the effort that arises from
performing a computation using this “certain
combination of Data Structures and Algorithms”

= This effort may be measured by
" memory space used
= cpu time used
= or other suitable measures

Data Structures and Algorithms (9)

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Pseudocode for algorithms

Friedrich-Alexander-Universitat
Erlangen-Niirnberg ,

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Pseudocode for algorithms

B Ways of formulating Algorithms

= Computer languages
(= intention: to be run on computers)
= C
= JAVA
= Matlab
= Basic

= Pseudo code
(= intention: to describe algorithms on a high level,
to be understood by human beings)

= Remark: In both cases we have well-defined semantics!

Data Structures and Algorithms (11)

Pseudocode for algorithms

B Example of algorithm in Pseudo code

INSERTION-SORT(A)

1 for j « 2tolength[A]
do key < A[J] |
> Insert A[j] into the sorted sequence All J = 1].
[« j—1
while i > 0 and A[i] > key
do Afi + 1] <« Ali]
i «—1—1 |

Ali + 1] < key

0o ~1 Ot B

Data Structures and Algorithms (12)

Pseudocode for algorithms

B Rules for Pseudo code (1)
= |[ndentation indicates block structure

= Looping constructs (while, for, repeat)
and conditional constructs (if, then, else)
have interpretation similar to Pascal

= Difference: the loop-counter of for-loops remains valid
after exiting the loop

= Symbol ® or % indicates a comment

= Multiple assignment A& /€ e
Is equivalentto €< e andthen A&

Data Structures and Algorithms

(13)

Pseudocode for algorithms

B Rules for Pseudo code (2)

= Variables (such as i, |, and key)
are local to the given procedure

= Array elements are accessed
by specifying the array name followed by
the index in square brackets (e.g. AJi])
= AJi..J] indicates a range of values within an array
(e.g. A[l..n] = A[1], A[2], ..., A[n])
= Objects (= compound data) consist of fields or
components: abc[C] is field abc of an object C.

Data Structures and Algorithms (14)

Pseudocode for algorithms

B Rules for Pseudo code (3)

= An array is treated as an object with field length.
length[A] = number of elements of array A

= A variable representing an array or object
Is treated as a pointer to the data
representing the array or object.

= NIL is the pointer that refers to no object at all

= Parameters are passed by value:
the called procedure receives a copy
of its parameters, that are treated
as local variables of the procedure

Data Structures and Algorithms (15)

Pseudocode for algorithms

B Rules for Pseudo code (4)

= The boolean operators “and” and “or”
are “short circuiting”:
= In an expression “x and y”, x is evaluated first

= |f x is FALSE the expression is FALSE,
and y is not evaluated at all

= In an expression “x or y”, X is evaluated first

= If x is TRUE the expression is TRUE,
and y is not evaluated at all

= This allows writing of expressions e.g. as:

“x#NIL and f[x] =y’

Data Structures and Algorithms

(16)

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Starting examples

Friedrich-Alexander-Universitat
Erlangen-Niirnberg ,

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstralle 3, 91058 Erlangen

Starting examples

B The “sorting problem”

= |nput:
A sequence of n numbers (a,, a,, ..., a,)
= Qutput:
A permutation (reordering) (a,, a,, ..., a,)

of the input sequence

suchthata, <a,’ < ...<a/

Data Structures and Algorithms (18)

Starting examples

M [nsertion sort

Data Structures and Algorithms (19)

Starting examples

M [nsertion sort

INSERTION-SORT(A)

1 for j < 2tolength[A]

2 do key < A[/]

3 > Insert A[/] into the sorted sequence A[l..j — 1].
- I <~ j—1

5 while i > 0 and A[i] > key
6 do A[i + 1] < A[i]
g/ I «— 1 —1

8

All + 1] <« key

Data Structures and Algorithms (20)

Starting examples

M [nsertion sort

= Be t; = number of times the while loop is executed for value j

INSERTION-SORT (A)
1 for j < 2tolength[A]

2 do key < AlJ]

5 > Insert A[j] into the sorted
sequence A[1..j — 1].

= i < j—1

S while i > 0 and A[i] > key

6 do Ali + 1] < A[i]

7 | «—i—1

8 Ali + 1] < key

Data Structures and Algorithms (21)

Starting examples

B Insertion sort
= "Running time in general”

Tn) = cin+cy(n—1)+c4(n—1) 4 cs er ~+ C6 Z(fj— — 1)
=2 =

e B4y Z(fj —1)+cg(n—1).
j=2

Running time = number of primitive operations or steps

Data Structures and Algorithms (22)

Starting examples

H [nsertion sort

= Best case: “already sorted”
(=1forj=2,...,n)

T'(n)

|

cin+cyn—1)+can—1)+cs(n—1) +cg(n —1)
= (el t 6 rtcitest)y (6 -+ catCsF¢r).

——> linear effort w.r.t. input parameter N

T(n)=a-n+b; abeR

Data Structures and Algorithms (1)

Starting examples

B Insertion sort

= Worst case: “sorted in reversed order”
(§=jforj=2,...,n)

T(n) = cin+c(n—1)4+c4(n—1)+cs (n(n;) - 1)

(n—1 — 1
+Cﬁ(n(nz))+C?(H(H2))Jrc*g(n—l)

Cs Ce B €5 Ce 7
— (2 =t 5 -t 2)@(51+C2+C4+5"5“5+C8)H-

= lepf Ci - Cs | Cr).

——> Worst case running time is a quadratic function of n

Data Structures and Algorithms (2)

Starting examples Principle of recursion

Expl: Computation of n! (n_factorial): n!'=n(n-1)-(n-2)-...-1=n-(n-1)!

fact(n)
ifn=20
then n_factorial := 1
else n_factorial := n - fact(n —-1)

fact(4) = 4- fact(3) = 4-6=24
! 1
fact(3) = 3- fact(2) = 3:-2=6
1
fact(2) = 2- fact(1) = 2:1=2

I
RN

fact(1) = 1- fact(0) 1
: !
fact(0) = 1

Data Structures and Algorithms (25)

Starting examples

B An example of a “recursive algorithm”: Merge sort

sorted sequence

initial sequence

Data Structures and Algorithms (26)

Starting examples

B Merge sort

MERGE-SORT(A, p, r)
iEp <7
theng < [(p +7r)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A, g + 1, r)
MERGE(A, p, q,r)

Lh B W b =

	heute.pdf
	Starting examples
	Starting examples

